Journal of Applied Econometrics and Statistics Vol. 2, No. 2, 2023, pp. 93-115 https://DOI:10.47509/JAES.2023.v02i02.01

Time Series Modelling and Forecasting of Seasonal Rainfall Patterns in Bida Basin, Nigeria

Mayaki, J.¹, Sule, I. M.^{2,4} and Bako, D.³

¹Department of Statistics, Federal University Minna, Niger State, Nigeria. E-mail: j.mayaki@futminna.edu.ng ²Department of Geography, Federal University Minna, Niger State, Nigeria. E-mail: isaiah.sule@futminna.edu.ng ³Department of Mathematics, Federal University Minna, Niger State, Nigeria. E-mail: deborah.bako@futminna.edu.ng ⁴WASCAL CC& HH, Federal University Minna, Niger State, Nigeria.

Received: 02 July 2023; Revised: 04 August 2023; Accepted 20 August 2023; Publication: 31 December 2023

Abstract: The study titled Time Series Modelling and Forecasting of Seasonal Rainfall Patterns in Bida Basin, Nigeria, modelled and forecasted time series data from the European Centre for Medium-Range Weather Forecasts (ECMWF) ERA5 reanalysis precipitation data from 1981-2020. The mean method, naïve method and seasonal naïve method were used as benched mark forecasting method to linear regression methods, exponential methods and ARIMA methods. The R-statistical package was used for analysing the data. In choosing among exponential methods and ARIMA methods, the est() and auto.arima() functions were employed respectively to select model that best capture the features of the time series data while the R-squared was employed to select from linear regression models. The scaled methods for prediction error evaluations and residual analysis were performed on the various models considered. The linear regression, seasonal ARIMA and exponential smoothing methods were better than the three benched mark forecasting methods. However, root mean squared error (RMSE) evaluation showed that the linear regression model with trend and seasonality had the closest predicted value to the actual rainfall values. With the mean absolute error (MAE) and the mean absolute scaled error (MASE), ARIMA(0,0,0)(0,1,1)_{[12]} has the least value. Based on the results from the residual analysis and error dependent evaluation methods, linear regression model was selected for modelling and forecasting Bida basin rainfall since it had the closest prediction value to the actual value.

Keywords: Rainfall, Modelling, Forecasting, Bida Basin, Pattern

1. INTRODUCTION

Rainfall has been identified as a key climatic variable in climate sciences and hydrology; as changes in its pattern may have diverse effects on human

for citation :

Mayaki, J., Sule, I. M. and Bako, D. (2023). Time Series Modelling and Forecasting of Seasonal Rainfall Patterns in Bida Basin, Nigeria. *Journal of Applied Econometrics and Statistics*, Vol. 2, No. 2, pp. 93-115. https://DOI: 10.47509/JAES.2023.v02i02.01

wellbeing, ecosystems, flora, and fauna (Yila et al., 2023). It plays key roles in the hydrologic cycle; with changes in its patterns directly influencing the water resources of a given area by altering the spatiotemporal distribution of runoff, soil moistness, and groundwater reserve (Yila et al., 2023). Water resources are so important and the need for them are increasing essentially for many purposes such as transportation, power generation, domestic consumption, agricultural activities and industry (Elouissi et al., 2016). However, studies have revealed global impacts of climate change and variability on water availability due to alterations in rainfall patterns, with Africa predicted to experience the worst effects (Oti *et al.*, 2020). The uncertainty of the rainfall events will have several effects on the water resources and water demands especially household water use, agriculture use and hydropower generation among several others (Oti et al., 2020). consequently, it becomes imperative to examine the trends of rainfall in order to understand climate variability and change because it is very variable spatio-temporarily at all scales (Yila *et al.*, 2023).

The work of Abe *et al.* (2022) which analysed and forecasted rainfall patterns in Gombe Nigeria revealed an alternation of wet and dry period. Also, time series analysis of rainfall data of Kano, Katsina and zaria meteorological stations by Ekpoh (2007) revealed a decrease in mean annual rainfall for the three station. Changes in th e pattern of rainfall is largely due to threat posed by climate change witnessed globally and therefore, understanding the pattern of rainfall and predicting it future occurrence is necessary for the planning of various human activities. Rainfall being a random phenomenon, the paper consider some forecasting procedure to choice the one that provide better estimates for the future.

The Bida basin, which is the focal area of this study is quite important in the sustenance of livelihoods of Nigerians and plays a vital role in the nation's food security. This is because its nutrient-rich soil provides livelihoods to majority of its rural and urban dwellers. The nutrient-rich flood plains (fadamas) of the basin allow for large scale cultivation of rice and sugar production while the upland areas support the cultivation of a numerous varieties of other staple foods and cash crops such as maize, sorghum, millet, yam, cassava, sweet potatoes, hot pepper, sesamum, cowpea, groundnut, among others. Its rivers and plains also provide opportunities for fishing and irrigation agriculture. However, agricultural production system in the basin is mainly rainfed; which is highly vulnerable to extreme rainfall patterns and/or seasonal variability and exposes the farmers who are largely dependent on the system to production risks and uncertainties (Olayide *et al.*, 2016). This is because optimum yield of crops depends on required rainfall thresholds and any condition. At the same time, other livelihoods, particularly, fishing are affected by the by the rainfall characteristics. Hence, the role of rainfall on agricultural and other livelihood activities in the basin cannot be overemphasized. Understanding the pattern of rainfall and predicting its future occurrence is expedient for planning of various human activities. Unfortunately, there are no evidence of rainfall forecasts for the basin. It therefore becomes very imperative to study and predict future rainfall patterns in the basin. Thus, this study considered some forecasting procedures to in a bid to choose the one that offers better estimates for the future.

2. MATERIALS AND METHODS

2.1. Description of Study Area

The Bida Basin, otherwise referred to known as the Mid-Niger or Nupe Basin, is located in north-central Nigeria between latitude 8° 30 \times SN to 9° 30 \times SN and longitudes 5° 00 \times SE to 7° 00 \times SE. It covers an area of approximately 24,200 km² (Obaje *et al.*, 2011; Okonkwo *et al.*, 2018). It has a NW–SE trending intracratonic sedimentary basin extending from Kontagora in Niger State of Nigeria to areas slightly beyond Lokoja in Kogi state (Obaje *et al.*, (2011). Bida Basin has a tropical climate with two distinct seasons, the wet and dry seasons. The wet season last for about 6-7 months. The rainy season commences in the month of April and ceases in the month of October while the dry season lasts between October and April. The area also experiences a short Harmattan season between the months of December

Figure 1: Nigeria showing Bida Basin

and February. The annual rainfall of the area ranges between 1100 – 1400mm with about 60 percent of it falling between July and September. The daily maximum temperature varies between 27°C and 36°C. Maximum daily temperature is recorded between March and May while the minimum temperature of 23°C to 25°C is recorded between December and March and from July – September. The vegetation of the Basin is largely Southern Guinea Savanna type which is characterized by abundant trees and shrubs interspersed by grasses especially where there are minimal human interferences with the natural vegetation, particularly on hills which are not often cultivated, while forest-like riparian vegetation is common around river channels. The major rivers draining the basin are Rivers Niger and Kaduna.

2.2. Data

The data used for this study is the European Centre for Medium-Range Weather Forecasts (ECMWF) ERA5 reanalysis precipitation data spanning 30 years from 1981 to 2020. Reanalyses utilise a wide variety of observation databases assimilated in a complex fashion into a numerical weather prediction model to produce a spatially and temporally coherent synthesis of various meteorological variables over the recent historical period (Essou *et al.*, 2016). It has a grid resolution of 31 km (0.218125°) and data are available on hourly basis and comprises of analysis and short forecasts, which run twice daily from 06 and 18 UTC.

2.3. Analytical Methods

2.3.1. *Decomposition Model:* In time series, we have four components namely, Trend, Seasonal, Cyclic and Random. These components are usually decomposed to see their effect on the time series data. Two decomposition methods for checking how these components affect the time series observations were used.

(*a*) Additive Decomposition: As the name implies, the component are taken as the sum of the decomposed patterns

$$\boldsymbol{X}_{t} = \boldsymbol{T}_{t} + \boldsymbol{S}_{t} + \boldsymbol{\varepsilon}_{t}$$

Where, \mathbf{X}_t is the time series observation, T_t is the trend effect at time t, S_t is the seasonal effect at time t and ε_t is the random effect at time t.

(*b*) *Multiplicative Decomposition:* Here, the time series data were taken as a product of the decomposed pattern

$$\boldsymbol{X}_{t} = \boldsymbol{T}_{t} \times \boldsymbol{S}_{t} \times \boldsymbol{\varepsilon}_{t}$$

2.3.2. *Simple Forecasting Methods:* The paper used three simple forecasting method as benchmarks for other forecasting methods used in

the paper. The methods are, average method, Naïve Method and seasonal naïve method.

(*a*) Average Method: With average method, the mean of the historical data is used as the forecast of all future values. Given that the historical data are y_1, \ldots, y_T , then the forecast can be written as

$$\overline{y}_{T+h|T} = \overline{y} = (y_1, \ldots, y_T)/T.$$

Where $y_{T+h|T}$ denote the estimate of $y_{T+h|T}$ based on the observed data y_1, \dots, y_T .

(*b*) *Naïve Method:* here all forecast are set to be the value of last observed data. That is

$$\widehat{\boldsymbol{y}}_{T+\boldsymbol{h}|T} = \boldsymbol{y}_T$$

(c) Seasonal Naïve Method: This method is useful for highly seasonal series. With seasonal naïve method, the forecast value is set to be equal to the last observed value from the corresponding season of the year. It is usually written as

$$\widehat{y}_{T+h|T} = y_{T+h-km}$$

Where *m* = the seasonal period, k = [(h-1)/m]+1.

2.3.3. Linear Regression Models

(a) Linear regression with trend component: To fit a linear trend model to capture the relationship between rainfall and time, we set the output variable y_{t} as rainfall observation at time t and the predictor as the time index t in the regression model:

$$y_t = \beta_0 + \beta_1 t + \varepsilon$$

where y_i is the Rainfall at time, β_0 is the intercept, β_1 is the slope (trend), and ε_i is the noise term at time t.

(b) Linear regression with seasonal component: A seasonal pattern in a time series means that observations at certain seasons have consistently higher or lower observation than the other seasons. To ascertained the month with higher rainfall or lower rainfall, linear regression with season is employed. The most common way to capture seasonality in a regression model is by turning each of the month to a categorical variable that denotes the season for each observation. This categorical variable is then turned into absence presence (dummy) variables, which are included as predictors in the regression model. The model is given as:

Mayaki, J., Sule, I. M. and Bako, D.

$$y_t = \beta_0 + \sum_{i=2}^{12} \beta_i Season_{i,t} + \varepsilon_t$$
 $i = 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12$

Usually, the first season is omitted for the singularity problem.

(c) Linear Regression with trend and seasonal component: The linear regression with trend and seasonal component is a model with both trend and seasonal dummies as below

$$y_t = \beta_0 + \beta_1 t + \sum_{i=2}^{12} \beta_i Season_{i,t} + \varepsilon_t$$

2.3.4. Exponential Smoothing Methods

(a) Simple Exponential Smoothing: This method uses the weighted average of all the past time series observation to perform a short-term forecast of the future value. Using the weighted average implies that as the observation get older the weight decreases exponentially. The method is implied that, weight is given to the current information and yet not ignoring the older information. We use simple exponential smoothing method when the series trend and seasonality have been removed. It is defined mathematically as:

Level

$$L_{t} = \alpha y_{t} + (1 - \alpha) L_{t-1} + \alpha (y_{t} - L_{t-1})$$

where

 L_t = smoothed statistics, that is, the simple weighted average of current

value y_t

 L_{t-1} = previous smoothed statistic

 α = smoothing constant of the data, note that $0 < \alpha < 1$ t = time period and the forecast is

$$\widehat{Y}_{t+1} = \widehat{Y}_t + \alpha \,\varepsilon_t$$

where ε_{t} is the forecast error at time t

(b) Double Exponential Smoothing: sometime referred to as Holt's trend or second-order exponential smoothing. This method is used for a data with linear tend but no seasonal pattern. The double exponential smoothing is given by

Level
$$L_t = \alpha y_t + (1 - \alpha)(L_{t-1} - T_{t-1})$$

Trend
$$T_t = \beta (L_t - L_{t-1}) + (1 - \beta) T_{t-1}$$

98

where

 L_t = smoothed statistics, that is, the simple weighted average of current value y_t

 L_{t-1} = previous smoothed statistic

 α = smoothing constant of the data, note that $0 < \alpha < 1$ t = time period

 T_{t-1} = best estimate of trend at time t

 β = trend smoothing factor, note that $0 < \beta < 1$

The k-step ahead forecast is given by

$$\widehat{Y}_{t+k} = L_t + kT_t$$

(c) The Seasonal Holt-Winter's Model: Named after the inventors, the Holt-

Winter's seasonal forecasting model for a given time series data, say \hat{Y}_t and with component in additive method is:

Level: $L_t = \alpha (Y_t - S_{t-s}) + (1 - \alpha)(L_{t-1} + T_{t-1})$

Trend : $T_t = \beta'(L_t - L_{t-s}) + (1 - \beta')(T_{t-1})$

 $\mathbf{Seasonal}: \mathbf{S}_{t} = \gamma * (\mathbf{Y}_{t} - L_{t}) + (1 - \gamma *) \mathbf{S}_{t-s}$

Forecast:
$$\mathbf{Y}_{t+k} = L_t + kT_t + S_{t+k-s}$$

 α is the level smoothing constant $0 \le \alpha \le 1$

 β' is the trend smoothing constant $0 \le \beta' \le 1$

 γ * is the seasonal smoothing constant $0 \le \gamma * \le 1$

 L_t is the estimate of the level of the series at time t.

 Y_{t} is the actual value of the series at time t

 T_{t} is the estimate of the slope of the series at time t.

s, is the seasonal component.

s is the length of seasonality and

k is the number of periods ahead to be forecast

2.3.5. Seasonal Autoregressive Integrated Moving Average (SARIMA) Model

This is the extension of the ARIMA(p,d,q) model by addition of four new parameters P,D,Q and s known as seasonal parameters. The model is denoted by:

$$SARIMA(p, d, q)(P, D, Q)_s$$
,

where

P = the order of AR(p) process, d = the order of integration, q = the order of the MA(q) process and the seasonal parameters, P = the order of seasonal AR(P) process, D = the seasonal order of integration, Q = the order of seasonal MA(Q) process and s = the number of observations per cycle.

2.4. Model Selection

In choosing the exponential model or autoregressive integrated moving average (ARIMA) model that capture the features of the time series data, the following model selection criteria's: (a) the Akaike information criterion (AIC), (b) the Akaike information criterion corrected (AICc) and (c) The Bayesian information criterion (BIC) where used by est() and auto.arima() functions in r-package to select the models while (d) R-square was used to select from three linear regression models, model with trend only, model with seasonality only and model with both trend and seasonality.

(a) The Akaike information criterion (AIC) is defined as

$$AIC = 2L + 2k$$

Where L is the log likelihood function of the model and k is the total number of parameters, initial states that have been estimated and the residual variance.

(b) The Akaike information criterion corrected (AICc) is defined as

$$AICc = AIC + \frac{k(k+1)}{T-k-1}$$

(c) The Bayesian information criterion (BIC) is defined as

$$AICc = AIC + k[\log(T) - 2]$$

(d) **R-Squared** is defined as proportion of variation in dependent variables that is explained by changes in the independent variable. It is expressed mathematically as:

$$R-squared = \frac{Regression \ Sum \ of \ Squares}{Total \ Sum \ of \ Squares} = \frac{SSR}{TSS}$$

2.5. Forecast Accuracy Evaluation of the Models

The forecast error from each model was check in this article using the following forecast error measures, (a) Root Mean Squared Error (RMSE)

100

(b) Mean Absolute Error (MAE) and (c) Mean Absolute Scaled Error (MASE).

(a) The Root Mean Squared Error (RMSE) is the root of the average squared difference between prediction and actual data. Ti measures the magnitude of the error. It is defined mathematically as:

$$RMSE = \sqrt{\frac{1}{n}\sum_{t=1}^{n}\varepsilon_{t}^{2}}$$

(b) Mean Absolute Error (MAE) is a measure of the average magnitude of errors in a set of predictions, without considering their direction.

$$MAE = \frac{1}{T} \sum_{t=1}^{T} / \varepsilon_t /$$

(c) Mean Absolute Scaled Error (MASE) for a seasonal time series id defined as

$$MASE = \frac{1}{T} \sum_{t=1}^{T} \frac{|y_t - \hat{y}_{t/t-1}|}{\frac{1}{T - m} \sum_{t=m+1}^{t} |y_t - y_{t-m}|}$$

It is the ratio of MAE of the model to that of seasonal naïve method. Here, value less than 1 indicate that the model has lower average error than naïve forecasts for the training period and poor forecasting otherwise.

2.6. Data Analysis

R-software (version 4.2.2) was used for the analysis of the data with the help of "zoo", "fpp2", "forecast", "TTR", "seasonal", "xts", "TSstudio", "dplyr", "lubridate", "trend", "plotly", "stats", and "tseries".

3. RESULTS AND DISCUSSIONS

The monthly rainfall forecasting of Bida basin was achieved using various time series forecasting techniques. The Bida monthly rainfall data for the period of 1981 to 2020 was used. The data was split into the train series and the test series. The train series was the Bida monthly rainfall data from January1981 to December 2017 and was used to develop the models while the test series represent Bida monthly rainfall data from January, 2018 to December 2020 was used for forecasting. The prediction was made using various time series forecasting methods.

Month	Mean	Standard Deviation
January	2.32	3.33
February	6.62	8.75
March	24.8	20.4
April	56.7	33.2
May	139.	41.3
June	205.	52.6
July	262.	47.1
August	318.	69.9
September	288.	63.9
October	131.	48.3
November	10.3	10.5
December	2.01	4.12

Table 1: Descriptive Statistics

The descriptive statistics table 1 above and the figure 1, the barplot represents Bida average monthly rainfall for the months of the years from 1981 to 2020. As was observed, on the average, each month is different from the other by its standard deviation however, the pairs months of July/ October, August/September are relatively close to each other.

Figure 3, the polar plot representation of the series also confirmed a repeated seasonal patterns along with a year to year trend. The polar plot revealed a distinct pattern where the month of August has the highest rainfall, followed by September, June, October, July and May in that order. In other words, yearly rainfall in Bida is usually between May to October. Figure 4 revealed normal plot, cycle plot and the box plot respectively. Figure 4 further confirmed that in the month of August rainfall is at the peak, followed by September, June, October and July in that order. Although the onset of rain in Bida basin is usually April through to October based on the statistics.

Figure 1: Bida Average Monthly Rainfall

Time-plot and Model Identification

The series was decomposed using the multiplicative model as suggested by both Ljung-Box test and Box-Pierce test. One of the assumptions that

Figure 2: Decomposition of Multiplicative Time Series of Monthly Rainfall in Bida from 1981 to 2020

Figure 3: Polar Seasonal Plot for Bida Monthly Rainfall Data from 1981 to 2020

Figure 4. Seasonality Plot for Bida Monthly Rainfall Data from 1981 to 2020

generally concerned all the forecasting approaches is that the trend, cyclic and seasonal components are stable, and that the past patterns will continue. From the decomposition of multiplicative time series in figure 2 below, it revealed the presence of a trend component in the series and exhibits a slightly downward trend from about 1993, although not obvious. The seasonal component was very strong and persistent with ups and downs cycles at certain month(s) each year.

Table 2: Models Selected and Portmanteau Test						
Model Category	Selected Model	Ljung-Box Test x ² Degree of P-Value freedom				
Linear	$y_{t} = \beta_{0} + \beta_{1}t + \sum_{i=2}^{12} \beta_{i}Season_{i,t} + \varepsilon_{t}$	1.1461	1	0.2844		
Exponential ARIMA	EST(A, N, A) SIAR(0,0,0)(0,1,1) ₁₂	0.6251 1.7350	1 1	0.4292 0.1878		

The figures above, that is, figure 5-10 are the residuals plots from the models, the 5-7 there are significant seasonal sparks from lag 12 to 36 and from the Ljung test was statistical significant which implied that mean, naïve and seasonal naïve method do not capture the pattern in the data. The figures 8, 9 and 10 also revealed a spark at lag 12 with was statistical significant was the Ljung-Box test and where the models further examining.

Figure 5: Residual Plot for Mean or Average Forecasting Method

Residuals Plot for Naive method

Figure 6: Residual Plot for Naive Forecasting Method

Figure 7: Residual Plot for Seasonal Naive Forecasting Method

Residuals Plot for Linear regression model

Figure 8: Residual Plot for Linear Regression Forecasting Method

Figure 9: Residual Plot for Seasonal Holt-Winter Forecasting Method

Figure 10: Residual Plot for Seasonal ARIMA Forecasting Method

Table 2 above reported the models selected from linear regression models, Exponential smoothing methods and seasonal ARIMA models. The selection of the linear regression model where based on their adjusted Rsquares. Three models where considered, model with trend only, model with seasonal dummies only and model with both trend and seasonal dummies. The model with both trend and seasonal dummies had the highest adjusted R-squared and was selected. The exponential smoothing and seasonal arima models where automatically using est() and auto.arima functions in r statistical package respectively. The three categories of the models considered passed the portmanteau test and are all good for estimation of rainfall parameters.

Table 3 is the predictive accuracy evaluation of the forecasting methods used in this paper. The mean, naïve and seasonal naïve methods are used as benchmarks are the selected three models. Three scaled evaluation techniques where employed, the root mean square error (RMSE), the mean absolute error (MAE) and the mean absolute scaled error (MASE). The linear regression model with trend and seasonality show least root mean squared error, this implies that, prediction from the linear regression model is the closest to the actual values than all other models considered. With the MAE and MASE SARIMA(0, 0, 0)(0,1,1)₁₂ is the best, since it has the least value compare to other models considered.

Furthermore, comparing models from linear regression model, exponential smoothing and SARIMA model with the benchmark forecasting methods, it was revealed by MASE that the values from linear regression model (0.9167), exponential model (0.9262) and SARIMA model (0.9062) are less than 1, which implies that all the three models compared with the seasonal naïve performed better than the seasonal naïve method. However, we adopted the model with least root mean squared error for prediction since it is the model with closest prediction values to the actual value among the models considered.

The model results presented in Table 4 are based on the European Centre for Medium-Range Weather Forecasts (ECMWF) ERAS reanalysis precipitation data. It was showed that the monthly average precipitation is at least 12.5234mm. However, the result revealed a negative trend in rainfall, this implies a decrease in rainfall with about 0.0464mm yearly and was statistically significant at less than 1% significance level.

Furthermore, the result revealed a no significant rainfall in the month of February, November and December as rainfall in these months are not statistically significant. In contrast, the significant onset of rainfall in Bida basin is March and retreat by November, with the month of August with the highest rainfall followed by September, July, June, May, October, April and March respectively.

Time Series Modelling and Forecasting of Seasonal Rainfall Patterns in Bida Basin, Nigeria 109

Table 3: Predictive Accuracy Evaluation					
Forecast Method	RMSE	MAE	MASE		
Mean	117.4384	107.0264	3.2795		
Naïve	161.0406	110.8286	3.3961		
Seasonal Naïve	48.1396	33.2272	1.0182		
Linear Regression	45.1776	29.9149	0.9167		
Exponential	45.3875	30.2258	0.9262		
SARIMA	45.3145	29.5724	0.9062		

Table 4: Result of Linear Regression Models

coefficient	Estimate	Std. Error	t value	Pr(> t)
(Intercept)	12.5234	7.2597	1.725	0.0852.
trend	-0.0464	0.0147	-3.158	0.0017 **
season2	4.2115	9.2234	0.457	0.6482
season3	22.2271	9.2235	2.410	0.0164 *
season4	56.2452	9.2235	6.098	2.39e-09 ***
season5	137.6794	9.2235	14.927	< 2e-16 ***
season6	205.9020	9.2237	22.323	< 2e-16 ***
season7	258.6203	9.2238	28.038	< 2e-16 ***
season8	321.0989	9.2240	34.811	< 2e-16 ***
season9	284.1761	9.2242	30.808	< 2e-16 ***
season10	129.0725	9.2244	13.993	< 2e-16 ***
season11	8.3838	9.2246	0.909	0.3639
season12	0.2291	9.2248	0.025	0.9802

Figure 12: Actual and Forecasted Monthly Rainfall from Linear Regression Model

Figure 13: Actual and Forecasted Monthly Rainfall from SARIMA (0,0,0)(0,1,1)₁₂ Model

Figure 12 and 13 are the observed and 80% and 95% confidence interval for the forecasted values from 2018 to 2023 and revealed that the forecasted values are within 80% and 95% confidence interval. The forecasted values followed pattern revealed by the model. The Forecasted values are showed in Appendix I.

4. CONCLUSION

This study explored some time series forecast methods, the mean method, naïve, seasonal naïve, simple, double and triple exponential smoothing methods, the linear regression methods and seasonal autoregressive integrated moving average (ARIMA) method. The performance of the models were appraised by using monthly rainfall data for Bida from the year 1981 to 2020. The forecast accuracy measures were based on the forecast errors and residual plots.

The empirical findings revealed that linear regression method with both trend and seasonality performed better in terms of closest of predicted values to the actual values and was used for forecast. The negative and statistically significant trend coefficient corroborate the finding of Oti et al. (2020) that the global impact of climate change is bringing about alterations in rainfall patterns with Africa experiencing the worst effect. Kkpoh (2007) also revealed a decreasing mean annual rainfall for Kano, Katsina and Zaria. The monthly coefficient indicated a significant onset of rainfall in Bida basin is March and lasted till October yearly. The month of August was estimated to have 321.0989mm rainfall per year and the month with the highest rainfall

yearly, followed by September, July, June, May, October, April and March in that order. The forecast from both ARIMA $(0,0,0)(0,1,1)_{12}$ and linear regression models considered revealed same pattern of rainfall for 2023. The study will be helpful to our teaming population of farmers in planning their activities and to other who required water for other activities to plan their water harvesting strategies.

ACKNOWLEDGEMENTS

The authors wish to acknowledge the European Centre for Medium-Range Weather Forecasts (ECMWF) for the free access to the ERA5 Interim (European Reanalysis) grid-based daily rainfall data that was used for this work. No funding agency was involved in the study design, collection, analysis and interpretation of data in the writing of this manuscript.

COMPETING INTERESTS

Authors have declared that no competing interests exist.

REFERENCES

- Abe, A.; Adeniji, Q. A.; Rabiu, J. A; Adegboyega, O.; Raheem, I. O.; Rasaki, M.G.; Sada, S. M.; & Fidelis, L. (2022). Statistical Analysis and Forecasting of Rainfall Patterns and Trends in Gombe North-Eastern Nigeria. *Iraqi Journal of Physics*, 20(2), 64-77.
- Ekpoh, I. J. (2007). Climate and Society in Northen Nigeria: Rainfall Variability and Farming. The International Journal Series on Tropical Issues, 8(3), 157-162.
- Elouissi, A.; Sen, Z.; & Habi, M. (2016). Algerian Rainfall Innovative Trend Analysis and its Implications to Macta Watershed. Arabian Journal of Geosciences, 9(303), 1-12.
- Emaziye, P. O (2015). The Influences of Temperature and Rainfall on the Yields of Maize, Yam and Cassava among Rural Households in Delta State, Nigeria. *Journal of Biology, Agriculture and Healthcare* 5 (1), 63-69.
- Essou, G.R., F. Sabarly, P. Lucas-Picher, F. Brissette, and Poulin A. (2016). Can Precipitation and Temperature from Meteorological Reanalyses Be Used for Hydrological Modelling? *Journal of Hydrometeorology*, 17, 1929–1950.
- Obaje N. G, Moumouni A., Goki N. G & Chaanda M. S. (2011). Stratigraphy, Paleogeography and Hydrocarbon Resource Potentials of the Bida Basin in North-Central Nigeria. *Journal of Mining and Geology*, 47(2) 97–114.
- Okwokwo O. I, Adetona A. A., Adewumi , T., Sunday, O., Adediran S. (2018). Interpretation of High-resolution Aeromagnetic Data to Determine Sedimentary Thickness over Part of Bida Basin, North Central Nigeria. *Journal of Geology and Mining Research* 10(6), 72-80.
- Olayide O. E., Tetteh I. K., Popoola L. (2016). Differential Impacts of Rainfall and Irrigation on Agricultural Production in Nigeria: Any Lessons for Climate-Smart Agriculture? *Agricultural Water Management*, 30-36.
- Oti J. O., Kabo-bah A. T., & Ofosu E. (2020). Hydrologic Response to Climate Change in the Densu River Basin in Ghana. *Heliyon* 6 (2020) e04722
- Yila K. M., Gboku M. L. S, Lebbie M. S & Kamara L.I (2023). Changes in Rainfall and Temperature and Its Impact on Crop Production in Moyamba District, Southern Sierra *Atmospheric and Climate Sciences*, 13, 19-43.

		Point Forecast	Lo 80	Hi 80	Lo 95	Hi 95
Jan	2018	-8.1274249	-59.908750	43.65390	-87.42141	71.16656
Feb	2018	-3.9622898	-55.743615	47.81904	-83.25628	75.33170
Mar	2018	14.0068994	-37.774426	65.78822	-65.28709	93.30089
Apr	2018	47.9785210	-3.802804	99.75985	-31.31547	127.27251
May	2018	129.3663589	77.585033	181.14768	50.07237	208.66035
Jun	2018	197.5425751	145.761250	249.32390	118.24859	276.83656
Jul	2018	250.2144670	198.433142	301.99579	170.92048	329.50846
Aug	2018	312.6466291	260.865304	364.42795	233.35264	391.94062
Sep	2018	275.6774399	223.896114	327.45877	196.38345	354.97143
Oct	2018	120.5274399	68.746114	172.30877	41.23345	199.82143
Nov	2018	-0.2076952	-51.989021	51.57363	-79.50168	79.08629
Dec	2018	-8.4087763	-60.190102	43.37255	-87.70277	70.88521
Jan	2019	-8.6843022	-60.484914	43.11631	-88.00782	70.63922
Feb	2019	-4.5191671	-56.319779	47.28144	-83.84269	74.80436
Mar	2019	13.4500221	-38.350590	65.25063	-65.87350	92.77354
Apr	2019	47.4216437	-4.378968	99.22226	-31.90188	126.74517
May	2019	128.8094816	77.008870	180.61009	49.48596	208.13300
Jun	2019	196.9856978	145.185086	248.78631	117.66218	276.30922
Jul	2019	249.6575897	197.856978	301.45820	170.33407	328.98111
Aug	2019	312.0897519	260.289140	363.89036	232.76623	391.41327
Sep	2019	275.1205627	223.319951	326.92117	195.79704	354.44409
Oct	2019	119.9705627	68.169951	171.77117	40.64704	199.29409
Nov	2019	-0.7645725	-52.565184	51.03604	-80.08810	78.55895
Dec	2019	-8.9656535	-60.766265	42.83496	-88.28918	70.35787
Jan	2020	-9.2411795	-61.062059	42.57970	-88.59574	70.11338
Feb	2020	-5.0760443	-56.896924	46.74484	-84.43060	74.27851
Mar	2020	12.8931449	-38.927735	64.71402	-66.46141	92.24770
Apr	2020	46.8647665	-4.956113	98.68565	-32.48979	126.21933
May	2020	128.2526043	76.431725	180.07348	48.89805	207.60716
Jun	2020	196.4288205	144.607941	248.24970	117.07426	275.78338
Jul	2020	249.1007124	197.279833	300.92159	169.74615	328.45527
Aug	2020	311.5328746	259.711995	363.35375	232.17832	390.88743
Sep	2020	274.5636854	222.742806	326.38457	195.20913	353.91824
Oct	2020	119.4136854	67.592806	171.23457	40.05913	198.76824
Nov	2020	-1.3214497	-53.142329	50.49943	-80.67601	78.03311
Dec	2020	-9.5225308	-61.343410	42.29835	-88.87709	69.83203
Jan	2021	-9.7980567	-61.640184	42.04407	-89.18515	69.58904
Feb	2021	-5.6329216	-57.475049	46.20921	-85.02002	73.75417
Mar	2021	12.3362676	-39.505860	64.17840	-67.05083	91.72336
Apr	2021	46.3078892	-5.534238	98.15002 -	-33.07921	125.69499
May	2021	127.6957270	75.853600	179.53785	48.30863	207.0828
Jun	2021	195.8719433	144.029816	247.71407	116.48485	275.2590
Jul	2021	248.5438352	196.701708	300.38596	169.15674	327.9309
Aug	2021	310.9759973	259.133870	362.81812	231.58890	390.3630
Sep	2021	274.0068081	222.164681	325.84894	194.61971	353.3939
UCt	2021	118.8568081	6/.UI4681	1/0.69894	39.46971	198.2439
NOV	2021	-1.8783270	-53.720455	49.96380 -	-81.26542	//.508//7
Dec	2021	-10.0794081	-61.921536	41.76272-	-89.46650	69.30769

Appendix I: Forecast from Linear Regression Model for the period 2018 to 2023

Jan	2022	-10.3549340 -62.219288	41.50942-89.77607 69.06620
Feb	2022	-6.1897989 -58.054153	45.67456-85.61093 73.23133
Mar	2022	11.7793903-40.084964	63.64374-67.64174 91.20052
Apr	2022	45.7510119 -6.113342	97.61537-33.67012 125.17214
May	2022	127.1388498 75.274495	179.00320 47.71772 206.55998
Jun	2022	195.3150660 143.450712	247.17942 115.89393 274.73620
Jul	2022	247.9869579 196.122604	299.85131 168.56582 327.40809
Aug	2022	310.4191200 258.554766	362.28347 230.99799 389.84025
Sep	2022	273.4499309 221.585577	325.31429 194.0288052.87106
Oct	2022	118.2999309 66.435577	170.16429 38.87880 197.72106
Nov	2022	-2.4352043 -54.299559	49.42915-81.85634 76.98593
Dec	2022	-10.6362854 -62.500640	41.22807-90.05742 68.78485
Jan	2023	-10.9118113 -62.799370	40.97575-90.36848 68.54486
Feb	2023	-6.7466761 -58.634235	45.14088-86.20334 72.70999
Mar	2023	11.2225130-40.665046	63.11007-68.23415 90.67918
Apr	2023	45.1941347 -6.693424	97.08169-34.26253 124.65080
May	2023	126.5819725 74.694414	178.46953 74.12531 206.03864
Jun	2023	194.7581887 142.870630	246.64575 115.30152 274.21486
Jul	2023	247.4300806 195.542522	299.31764 167.97341 326.88675
Aug	2023	309.8622428 257.974684	361.74980 230.40558 389.31891
Sep	2023	272.8930536 221.005495	324.7806 193.43639 352.34972
Oct	2023	117.7430536 65.855495	169.63061 38.28639 197.19972
Nov	2023	-2.9920816 -54.879640	48.89548-82.44875 76.46459
Dec	2023	-11.1931626 -63.080722	40.69440-90.64983 68.26350
		ME RMSE	MAE MPE MAPE MASE ACF1
Trai	Lning	set -7.291601e-16 39.08628	25.31126 NaN Inf 0.7755994 0.0623002
Test	: set	9.998653e01 45.17768	29.91492 Inf Inf 0.9166671 0.0473351
		Theil's U	
Trai	ining	set NA	
Test	: set	0	

		Point Forecast	Lo 80	Hi 80	Lo 95	Hi 95
Jan	2018	1.479427	-50.973688	53.93254	-78.74069	81.69954
Feb	2018	8.222846	-44.230269	60.67596	-71.99727	88.44296
Mar	2018	21.114119	-31.338996	73.56723	-59.10600	101.33424
Apr	2018	51.136507	-1.316608	103.58962	-29.08361	131.35662
May	2018	132.658846	80.205732	185.11196	52.43873	212.87896
Jun	2018	191.408915	138.955800	243.86203	111.18880	271.62903
Jul	2018	233.824683	181.371568	286.27780	153.60457	314.04480
Aug	2018	313.654563	261.201449	366.10768	233.43445	393.87468
Sep	2018	278.952447	226.499332	331.40556	198.73233	359.17256
Oct	2018	129.491562	77.038447	181.94468	49.27145	209.71168
Nov	2018	8.321035	-44.132080	60.77415	-71.89908	88.54115
Dec	2018	1.319639	-51.133476	53.77275	-78.90048	81.53976
Jan	2019	1.479427	-51.338764	54.29762	-79.29903	82.25788
Feb	2019	8.222846	-44.595345	61.04104	-72.55561	89.00130
Mar	2019	21.114119	-31.704072	73.93231	-59.66433	101.89257
Apr	2019	51.136507	-1.681684	103.95470	-29.64195	131.91496
May	2019	132.658846	79.840655	185.47704	51.88039	213.43730
Jun	2019	191.408915	138.590724	244.22711	110.63046	272.18737
Jul	2019	233.824683	181.006492	286.64287	153.04623	314.60314
Aug	2019	313.654563	260.836372	366.47275	232.87611	394.43302
Sep	2019	278.952447	226.134256	331.77064	198.17399	359.73090
Oct	2019	129.491562	76.673371	182.30975	48.71311	210.27001
Nov	2019	8.321035	-44.497156	61.13923	-72.45742	89.09949
Dec	2019	1.319639	-51.498552	54.13783	-79.45881	82.09809
Jan	2020	1.479427	-51.701334	54.66019	-79.85353	82.81238
Feb	2020	8.222846	-44.957915	61.40361	-73.11011	89.55580
Mar	2020	21.114119	-32.066642	74.29488	-60.21884	102.44707
Apr	2020	51.136507	-2.044254	104.31727	-30.19645	132.46946
May	2020	132.658846	79.478085	185.83961	51.32589	213.99180
Jun	2020	191.408915	138.228154	244.58968	110.07596	272.74187
Ju⊥	2020	233.824683	180.643922	287.00544	152.49173	315.15764
Aug	2020	313.654563	260.473802	366.83532	232.32161	394.98752
Sep	2020	278.952447	225.771686	332.13321	197.61949	360.28540
UCT	2020	129.491562	/6.310801	182.6/232	48.15861	210.82452
Nov	2020	8.321035	-44.859726	61.50180	-73.01192	89.65399
Dec	2020	1.319639	-51.861122	54.50040	-80.01332	82.65259
Jan	2021	1.4/942/	-52.061449	55.02030	-80.40428	83.36313
гер	2021	8.222840	-45.318030	61./63/2	-/3.66086	90.10655
Mar	2021	21.114119	-32.426/5/	/4.65499	-60.76958	102.99782
Apr	2021	51.136507	-2.404369	106 10070	-30./4/20	133.UZUZI
мау	∠∪∠⊥ 2021	101 400015	127 960000	100.199/2	3U.//314	414.34235 272 20262
0 UII	∠∪∠⊥ 2021	171.4U0715	100 202007	244.949/9	151 04000	215 70020
Aug	∠∪∠⊥ 2021	200.024083 313 651560	100.20300/ 260 112697	201.30330 367 105//	131.94098 231 77096	345.70839
Con	2021	278 0521/17	200.115007	220 10220	197 06074	360 83615
DC+	2021	129 491562	75 950626	183 03044	47 60796	211 27527
Nov	2021	8 321035	-45 219841	61 86191	-73 56267	90 20474
		0.041000		~~ • ~ ~ ~ ~ ~ ~ ~ ~ ~	, , , , , , , , , , , , , , , , , , , ,	~ ~ · · · · · · T

Appendix II: Forecast from ARIMA(0,0,0)(0,1,1)12 for the period 2018 to 2023

Dec	2021		1.319639	-52.221237	54.86052	-80.56406	83.20334
Jan	2022		1.479427	-52.419158	55.37801	-80.95135	83.91020
Feb	2022		8.222846	-45.675739	62.12143	-74.20793	90.65362
Mar	2022		21.114119	-32.784466	75.01270	-61.31665	103.54489
Apr	2022		51.136507	-2.762078	105.03509	-31.29427	133.56728
May	2022		132.658846	78.760262	186.55743	50.22807	215.08962
Jun	2022		191.408915	137.510330	245.30750	108.97814	273.83969
Jul	2022		233.824683	179.926098	287.72327	151.39391	316.25546
Aug	2022		313.654563	259.755979	367.55315	231.22379	396.08534
Sep	2022		278.952447	225.053862	332.85103	196.52167	361.38322
Oct	2022		129.491562	75.592977	183.39015	47.06079	211.92233
Nov	2022		8.321035	-45.577550	62.21962	-74.10974	90.75181
Dec	2022		1.319639	-52.578946	55.21822	-81.11113	83.75041
Jan	2023		1.479427	-52.774508	55.73336	-81.49481	84.45366
Feb	2023		8.222846	-46.031089	62.47678	-74.75139	91.19708
Mar	2023		21.114119	-33.139816	75.36805	-61.86012	104.08835
Apr	2023		51.136507	-3.117428	105.39044	-31.83773	134.11074
May	2023		132.658846	78.404911	186.91278	49.68461	215.63308
Jun	2023		191.408915	137.154980	245.66285	108.43468	274.38315
Jul	2023		233.824683	179.570748	288.07862	150.85045	316.79892
Aug	2023		313.654563	259.400628	367.90850	230.68033	396.62880
Sep	2023		278.952447	224.698511	333.20638	195.97821	361.92668
Oct	2023		129.491562	75.237627	183.74550	46.51733	212.46580
Nov	2023		8.321035	-45.932901	62.57497	-74.65320	91.29527
Dec	2023		1.319639	-52.934296	55.57357	-81.65459	84.29387
			ME	RMSE	MAE MPI	E MAPE	MASE ACF1
Trai	ining	set	-2.088870	40.32533 25	.61099 -Ini	E Inf 0.78	347840 0.05063604
Test	set		-3.251216	45.31454 29	.57244 -Ini	E Inf 0.90	061727 -0.02834885
			Theil's U				
Trai	ining	set	NA				
Test	set		0				